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Abstract 

The group-theoretical analysis of phase transitions 
in perovskite-related ABX4 compounds using the 
framework of Landau's theory for second-order 
transitions is outlined. It is assumed that the only 
symmetry-reducing distortions during these transi- 
tions will be the tilting of rigid B X  6 octahedra as a 
consequence of the softening of a particular libra- 
tional phonon mode. The analysis is applied to phase- 
transition sequences in CsFeF4, CsVF4, RbFeF4, 
RbVF4, RbA1F4 and T1A1F4 and compared with avail- 
able experimental results. For many transitions the 
prediction of such a second-order transition is borne 
out by the experiments, which justifies the hypothesis 
of rigid tilting octahedra. General conclusions about 
the character of this type of transition are drawn and 
the allowed transition sequences are examined in 
terms of the diffraction features (i.e. diffraction 
typologies) of the involved phases. 

Introduction 

Soft-mode-induced displacive transitions are known 
to occur in perovskites such as SrTiO3 and NaNbO3 
(Ahtee, Glazer & Megaw, 1972; Kay & Bailey, 1957). 
These transitions are carded by zone-boundary 
modes and involve the tilting of complete undistorted 
octahedra, which means that the octahedral librations 
will be the main components of the phonon eigen- 
vector. 

The perovskite-related ABX4 compounds such as 
CsVI:4 and RbFeF4 have an aristotype structure which 
is closely related to the perovskite aristotype structure 
since in the ABX4 case two-dimensional arrays of 
vertex-linked B X  6 octahedra are formed as can be 
seen in Fig. 1. 

As a consequence of these structural similarities it 
is expected that displacive transitions featuring tilting 
of octahedra will also occur in ABX4 compounds. 
This has been confirmed by a large body of experi- 
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mental evidence (Abrahams & Bernstein, 1972; Babel, 
Wall & Heger, 1974; Hidaka, Wood & Garrard, 1979; 
Hidaka, Wood, Wanklyn & Garrard, 1979; Hidaka, 
Inoue, Garrard & Wanklyn, 1982; Hidaka, Fujii, 
Garrard & Wanklyn, 1984; Bulou, Fourquet, Leble, 
Nouet, De Pape & Plet, 1982). 

Only recently Bulou, Rousseau, Nouet, Loyzance, 
Mokhlisse & Couzi 1983) presented evidence for 
optical soft modes in displacive transitions in RbAIF4. 

Glazer (1972, 1975) proposed a structure 
classification and a general notation for ABX3 struc- 
tures which were recently extended by Deblieck, Van 
Tendeloo, Van Landuyt & Amelinckx (1985) for 
ABX4 structures. Both classifications are based on 
the break down of a general tilt into component tilts 
around the tetrad axes of the octahedra. It will 
henceforth be assumed that the reader is familar with 
the accompanying symbolic structure notation of 
these classifications, which is described in the above- 
mentioned papers. 

Because it is clear from the large amount of avail- 
able experimental data for both ABX 3 and ABX4 
compounds that the new lattice period is never more 
than two basic periods, it is sufficient for both 
classifications to consider only such phases for which 
the basic period is doubled. In other words: only 
zone-centre or zone-boundary soft modes can be 

_) 

(a) (b) 

Fig. 1. The aristotype structures of (a) A B X  3 and (b) A B X  4. The 
B X  6 octahedra are hatched, the black circle is the A cation and 
the numbering of the octahedra is the one used for the labelling 
of the basis functions. 
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involved and thus the present paper will be concerned 
with these modes solely. 

The ABX4 classification by Deblieck et al. (1985) 
features the group-to-subgroup relations between the 
75 possible phases with tilted octahedra presented in 
the form of a family tree. These relations will be used 
later when the description of particular transitions is 
considered. 

The aim of the present paper is to outline the group 
theoretical analysis of octahedral libration modes 
which are involved in phase transitions through the 
condensation of such modes. This analysis is made 
within the framework of the Landau theory for 
second-order phase transitions (Landau, 1937) and 
yields the eigenvector of the phonon transforming 
according to the active representation, that is, if a 
second-order transition is allowed in view of the 
Landau criteria. 

Group theoretical aspects 

The group theoretical aspects of the Landau theory 
can be summarized as follows: 

If a crystal having a structure with space group Go 
undergoes a second-order phase transition to a struc- 
ture having the space group G1, where Go is of higher 
order than G1, and F~ is the: single irreducible 
representation of Go which drives this transition 
(i.e. the order parameter will transform according to 
this representation) then 

(1) Ga must be a subgroup of Go; 
(2) the transition corresponds only to that F~ which 

cannot be the totally s~cmmetrical representation 
but according to (1) F~' must subduce the totally 
symmetrical representation of G1; 

(3) the symmetrized Kronecker cube of F~, which is 
denoted [F/k] 3, must not contain the totally sym- 
metrical representation of Go. This criterion 
excludes a third-order invariant in the free-energy 
expansion; 

(4) the antisymmetrized Kronecker square of F~, 
which is denoted {F~}:, must not contain any 
polar vector representation. 

This last condition is due to Lifshitz (1941) and can 
be stated otherwise: Out of the infinite number of 
representations of space groups this condition allows 
the selection of those that have k vectors at special 
positions (zone-centre or zone-boundary points) 
where k can be written as a simple fraction of a 
reciprocal-lattice vector. 

Since in the present case zone-boundary modes are 
the only k # 0 modes that might be involved, this 
fourth criterion is automatically fulfilled as will 
become clear later on. 

The characters of the symmetrized cube and the 
antisymmetrized square of a particular representation 

are calculated as follows (Lyubarskii, 1960): 
A A A 

(1) 
A 1 A ,A {x}2(R) (2) 

where/~ is the symmetry operation under consider- 
ation. These representations can then be reduced, if 
reducible, using the standard orthogonality relations 
between representations (Bradley & Cracknell, 1972). 
The representations of space groups are tabulated for 
special points of symmetry in the Brillouin zone in 
terms of the allowed small representations of 
Herring's little group UGk; which is itself a factor 
group of the little group. The little group G k contains 
all symmetry operations of the space group which 
leave k invariant, or bring it into an equivalent posi- 
tion k+g ,  where g is any reciprocal-lattice vector. 
The remaining symmetry operations form the star of 
k, but since the isogonal point of all considered space 
groups is the holosymmetrical point group of the 
crystal system (4/m 2/m 2/m, 2/m 2/m 2/m, 2/m), 
the representation domain in the Brillouin zone will 
have the same volume as the basic domain and there 
is no need to study any wave vector outside the basic 
domain. This means that our attention may be re- 
stricted to the arm of the star of k situated in the 
representation domain and hence it is sufficient to 
consider only the little group belonging to this arm. 

Herring's little group nG k is then defined as the 
factor group with respect to the invariant subgroup 
of translations T k (Herring, 1942). 

~rGk = Gk/ T k, 

where T k contains translations t for which 

exp (-i2~rkt) = 1. 

Herring's little group has the advantage of being finite 
and of low order, which is not the case for space 
groups and their little groups. For a more complete 
treatment on this formalism the reader is referred to 
Bradley & Cracknell (1972). Once the representation 
for a particular transition is known, application of 
the full projection operator 

6 'k=(d,/IGl) Y (3) 

allows the construction of the phonon eigenvector in 
terms of the chosen base functions (i.e. atomic dis- 
placements, octahedral librations etc.).di is the 
dimension of the representation, I GI the  order of the 
group under consideration and x~(R) the character 
of the considered representation for a symmetry 
operator ff~ 

As already mentioned, the base functions for the 
representation will be the octahedral libration 
coordinates 

0~, (4) 

where i denotes the number of the octahedron. The 
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numbering sequence is shown in Fig. l(b). The first 
four octahedra are in the first two-dimensional layer 
at z = 0 and the second set of four is situated in the 
second layer at z = ½. The coordinates are then 

octahedron 
number 1 2 3 4 5 6 7 8 

position 000 0~0 ~00 ~O~t 00½ O~tt ~0~ t ~tt  

The index u in (4) indicates around which axis the 
libration coordinate is taken, u = x stands for [100], 
u = y  for [010] and u = z for [001]. 

Owing to the mechanical constraints not all 24 
possible base functions are needed; only ten and most 
of the time even less are necessary for the complete 
description. The ten active base functions are 

O'z, O x, 0:, O z, o7. (5) 

Because of the large number of possible group-to- 
subgroup relations which must be examined if the 
entire family tree of the 75 possible phases with tilted 
octahedra (Deblieck et al., 1985) is to be investigated 
(subgroups of index 4, 6 and 8 included), the scope 
of the present work will be limited to sequences of 
phase transitions which were experimentally 
observed. 

For each of the following symmetry analyses of 
transitions it is assumed that the transition is induced 
by a softening octahedral libration mode and the 
relevant normal coordinates are calculated according 
to the standard group theoretical projection (3). 

(i) The a°a°c°->a°a°c + transition 

This transition is found in RbA1F4 (Bulou et al., 
1982, 1983) at 553 K and it is assumed to occur in 
RbVF4 above 700K (Hidaka, Inoue, Garrard & 
Wanklyn 1982; Hidaka, Fujii, Garrard & Wanklyn, 
1984). The change of symmetry 

P4/ mmm( D14h) -> P4/ mbm( D54h) 

kz 

% 

Fig. 2. Labelling of the special points of he Brillouin zone in the 
basic domain for the F. lattice used in the analysis: F: (0, 0, 0); 

1 1 1 1 1 '~ 1 . M O A Z O O , ) , X  :(~,~, ); :(~,~,~); : ( ,  3" . (0, ½, 0) (from Bradley & 
Cracknell, 1972). 

Table 1. The allowed small representations for 
D~4h/ T ~ and D]h/ T a 

The omitted symmetry elements can easily be obtained from those 
presented in the table. The translations t, are 0 or ta or t2 for the 
M point and 0 or t~ or t2 or t3 for the A point, where t~, t2 and t3 
are basic translations of the tetragonal Fq Bravais lattice, p stands 
for x and y; q stands for a and b. The ungerade representations 
have been omitted because the inversion centre is conserved in the 
lower phase. All characters must be multiplied by a factor 
exp (-i2zrkt~). 

Dt4h/T M'A {EIt,} {C2zlt,} {C,%lt,} {C2plt,} {C2qit,} {lit,} 
M~A~Ats 1 1 1 1 1 1 

+ + 
M2 A2 A2g 1 1 1 - 1 - 1 1 

+ + 
M3AaBtg 1 1 -1 1 -1 1 

+ + 
M 4 A 4 B2g 1 1 - 1 - 1 1 1 

+ + 
Ms A5 Eg 2 -2 0 0 0 2 

is consistent with the group-to-subgroup relation in 
the ABX4 family tree (Deblieck et al., 1985), which 
means that it is unnecessary to assume any other 
structural deformation than the tilting octahedra. The 
symmetry reduction of index two is of the klassen- 
gleich type, which means that the isogonal point group 
remains unchanged in the transition and the lost 
symmetry elements will be purely translational. 
Indeed, the /-'q Bravais lattice of P4/mmm is trans- 
formed into a Fq lattice in P4/mbm according to 

t2= (a, 0, 0) It~ = (a', ~', 0) 

/'~: t2=(0, a, 0)+F~,: ~t'z=(a',a',O) 
t3= (0,0, ¢) Lt~ = (0, O, c), 

where the components of the basic translations are 
taken along the base vectors i, j, k of an orthonormal 
right-handed base Oxyz, directed along the tetragonal 
axes of P4/mmm and where a ' =  a cos ~Pz, with ~oz 
being the rotation angle around [001]. It is clear that 
such a transition may involve the condensation of a 
phonon at the M point of the Fq Brillouin zone, 
which is shown in Fig. 2 and hence the wave vector 
of such a phonon would be q = (½, ½, 0). 

The allowed small representations for D~h / T M can 
be obtained from Bradley & Cracknell (1972) and 
they are shown in Table 1. 

Since in the course of this transition the M point 
is transformed into a zone-centre point of P4/mbm, 
the M representations of P4/mmm must subduce the 
identity representation F~ of P4/mbm. For this pur- 
pose it is sufficient to consider the generating elements 
only and in the correct setting one obtains 

~0}, {I1000}. {C4+1000}, {C2,,I" 

These generators {Silvi} must satisfy the so-called 
Birman-Worlock condition: 

Xr?({S, Iv,}) = 1, (6) 

for the F k representation to subduce onto F~-. Clearly 
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M~ fulfils condition (6) and this representation will 
now be examined more closely. 

The full projection operator (3) applied on a 
sufficient part of the basis (5) yields 

6 +10L, 0 L, 0L Io, o, 0'z, o, o) 
= 01. 

This amplitude function represents an octahedral 
libration around [001] and it is clear that when soften- 
ing this mode can generate a structural deformation 
with structure symbol a°a°c +. Still the third Landau 
condition and the test for the presence of one or more 
Lifschitz invariants must be checked. 

It is easy to show that for one-dimensional rep- 
resentations (1) and (2) simplify to 

3 

and hence any representation of that kind will fulfil 
the remaining conditions. 

(ii) The a°a°c°-->a°a°c - transition 

This transition occurs at 514 K in T1A1F4 (Bulou 
et al., 1982) and the observed space group of the 
low-temperature phase is F4/mmc (D14Sh) (or 14/mcm 
in the setting of International Tables for Crystallogra- 
phy, 1983) which is the same as the space group of 
the octahedral framework with tilt scheme a°a°e  - .  
Since the symmetry reduction of index two is of the 
klassengleich type only pure translations are lost. As 
a consequence the product Bravais lattice is F ]  and 
the basic translations of the primitive unit cell are 

ft~ = (t:', a', c) 
a', c) 

[t~ = (a',  a', ~). 

Because a reflection will appear at the A point in 
the Brillouin zone of the high-symmetry phase, the 

1 1 wave vector of the phonon should be q = (:, :, ½). 
Because D14h/ T M is isomorphic with D14h/ T A, 

Table 1 can be used again if allowance is made for 
the fact that the translation t~ now includes t3 as well. 

The generating elements of 14/mcm as described 
I) in the Fq basis are: 

{cLIooo}, {C2xl½½0}, {II000} 

and subduction of A~- is found. The octahedral libra- 
tion coordinates transforming according to this rep- 
resentation are 

a A: = 05z. 

Clearly this libration eigenmode can lead to an a°a°c - 
tilting scheme because it is restricted to antiparallel 
libration around [001]. Since A~- is real and one- 
dimensional, a second-order transition is again 
allowed. 

Table 2. The allowed small representations for D~h/ T x 

The translat ions ti are 0 or  t2 ~ Fq. All characters must  be mult ipl ied 
by a factor  exp (-i2~rkt~). 

D~h/T × {EIt,} {C2zlt,} {C2ylt,} {C2xlt,} {/It,} 
X+AIg 1 1 1 1 1 

+ 
X2 B2g 1 -1  1 -1  1 

+ 
X3 Big 1 1 -1  -1  1 
X+B3z 1 -1 -1 1 1 

(iii) The a°a°c°->a+a°e ° transition 

The tilting scheme - +-°-° a ,  a c is observed for CsFeF4 
below 508 K, CsVF4 below 515 K and RbFeF4 below 
418 K (Hidaka, Wood & Garrard, 1979; Hidaka, 
Wood, Wanklyn & Garrard, 1979) and in all of these 
cases the observed space group is Pmmb(D52h) which 
indicates that tilting octahedra may be the only sym- 
metry-reducing mechanism involved (Deblieck et al., 
1985). The symmetry reduction of index four is of 
mixed type (i.e. it consists of a translationengleich 
reduction followed by a klassengleich reduction) and 
the Bravais lattice transforms into an orthorhombic 
Fo lattice: 

[t~ = (a, 0, 0) 

Fo: ~t~=(a, 2b, O) 

ItS= (0, 0, c), 

where 2b = 2a cos ~Px, c' = c cos Cx and ~Px is the tilting 
angle around [100]. 

The active representation will thus be found at the 
X point of the Brillouin zone Fq and hence the wave 
vector of the corresponding librational mode should 
be q =  (0, ½, 0). The character table of D14h/T x is 
found in Table 2. 

The generating elements of Pmmb are 

{C2zl0½0}, {C2yl0½0}, {II000} 

and it is found that the phonon eigenvector will thus 
transform according to X~-: 

~x~ = 0~ 

and allowing for the phase relationships of the unit 
cell this mode shows in-phase oscillations of 
octahedra around the [100] axis and it is obvious that 
such a libration can generate a tilt scheme -+-°-° Hpll  C . 

Again a second-order transition is allowed. 

(iv) The apa°C°~ + + o apaOcO.o + + + av a v e and ap avc 
transitions 

The former transition is proposed for CsFeF4 to 
occur at 423 K and for RbFeF4 at 378 K (Hidaka, 
Wood, Wanklyn & Garrard, 1979). The latter is found 
in CsVF4 at 425 K (Hidaka, Wood & Garrard, 1979). 
In all cases the low-temperature symmetry is Pmmn 

13 (D2h) except for RbFeF4, where it is P21212 (D3), 
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which indicates that the centre of symmetry is lost, 
probably through additional deformation of the 
octahedra (i.e. displacement of the Fe cation). 

The Bravais lattice remains primitive orthorhombic 
but all symmetry reductions, except for RbFeF4, are 
of the klassengleich type of index two and the new 
cell is now doubled along the [100] axis as well: 

ft~ = (2a', 0, 0) 
Fo: ~ t~ = (0, 2b, 0) 

I t~= (0, 0, c"), 

where 2a '  = 2a cos ~py, c"= c' cos ~y and ~y is the tilt- 
ing angle around [010]. 

From the schematic representation of the Fo 
Brillouin zone in Fig. 3 it is clear that the librational 
mode which could induce this transition will trans- 
form according to a Y-point representation and hence 
q = (½, 0, 0). The irreducible representations for this 
wave vector of Pmmb are reproduced in Table 3 and 
the generating elements for Pmmn are 

{Cz~1½½0}, {C2rl0½0}, {II000}. 

Y~3 is found to subduce onto L~-. Since two transitions 
are consistent with the present symmetry reduction, 
two corresponding librational modes can be found. 
The mechanical representation of the octahedral 
librations, limited to one layer, reduces to: 

2 Y~-~ O2  Yf3 O Y~-, 

which indeed means that two librational modes will 
transform according to Y~: 

¢,~*= 6~*Io~, o~, O'z, o~, 03> 
lo, : 2 : -~- Oy "J- Oy, 0 z -~- Oy, O, 01) 

and choosing two orthogonal linear combinations of 

ky 

Fig. 3. Labelling of the special points of the Brillouin zone in the 
basic domain for the Fo lattice used in the analysis. F: (0, 0, 0); 
Y: (½, 0, 0) (from Bradley & Cracknell, 1972). 

Table 3. The allowed small representations for  D ~ h  / T y 

The translations t, are 0 or t~, where t~ is the basic translation 
along [010] of the primitive Fo Bravais lattice. All characters must 
be multiplied by a factor exp (-i2~rkt,).  

D~h/T Y {EIt,} {C2rl½0+t,} {C2xlt,} {C2zl0½0+t,} {/It,} 
Y~ Alg 1 1 1 1 1 + 
Y2 B2g 1 - 1 1 - 1 1 
Y-~a Blg 1 1 - 1  - 1  1 
Y~4 B3g 1 -1 -1 1 1 

the base, one gets 

= Oy+ Oy+ Oz. 

These eigenvectors result in tilt schemes + ° + ap ape and 
+ + 

apapc respectively. The former is represented 
schematically in Fig. 4 as an example. Since Y~3 is 
real and one dimensional, a second-order transition 
is again symmetrically allowed. 

Although in RbFeF4 the structural deformation 
involves more than mere octahedral tilting it is always 
possible to check whether the same Y~3 representation 
can be responsible for the symmetry reduction which 
is now of index four and of a mixed type. Indeed, 
the point-group symmetry is also affected and, 
because the inversion centre is lost, there is additional 
subduction of the Y3 representation. However, since 
Y3 does not appear in the mechanical representation, 

remains the only possible active representation. 
This transition is expected to be of first order, in view 
of the obvious presence of other, distortion 
mechanisms. 

+ + + aOaOc + + o + (v) The a°a°c ÷-~ apapc and ~ ap a c transi- 
tions 

The former transition is observed in RbA1F4 at 
282 K (Bulou et al., 1982, 1983). The latter is found 
in RbVF4 at 483 K (Hidaka et al., 1982, 1984) and 
the low-temperature space group is Pmmn(D~ah) in 
both cases. The symmetry reduction of index four is 
of a mixed type and the Bravais lattice changes from 

Fig. 4. Schematic representation of a Y~s/B~g mode leading to the 
+ o + ap a e tilt scheme. Only the octahedra of one layer are displayed. 

The circles indicate the B cations and the small dots are the 
fluorine atoms. The axial setting of the aristotype is also indi- 
cated. 
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• Table 4. The allowed small representations for D 5 4 h / T  ~ 
The translations t~ are 0 or t 1 or t2(t l , t2eFq).  The symmetry elements are shifted by ½tl with respect to the setting in International 
Tables for  Crystallography (1983). The ungerade representations are selected because only the inversion centre {I]tt} with t~ # 0  is 
conserved. All characters must be multiplied by a factor exp (-i2¢rkti) .  

D~hl T M -{EI t,} {G~ It,} {G, 1½½o+ t,} {G. I t , }  {C.*zl½½o+ t,) {/,It,} 
2. t Eu l 1 i -1 - i  -1 
IE" 1 1 - i  -1 i -1 
1F" 1 1 - i  1 - i  -1 ~ u  

z t~-" 1 1 i 1 i -1 ~ u  

E,, 2 2 0 0 0 2 

D 4 h /  Table 5. The allowed small representations for ~8 T r 

The setting of  the axes and the choice of the origin correspond with International Tables for  Crystallography (1983). The ungerade 
representations are omitted because the inversion centre at the origin is conserved. 

D ~ h / r  r {El 0} {C2~ [000} {C2xy 1½½0} {I [0} . {S~:~IO00} {tr~b ]½½0} 

F-~/ Alg 1 1 1 .1 1 1 
r~  / A2g 1 1 i 1 1 i 
F'~/ Btg 1 1 1 1 r i , 
F+ / B2s 1 1 i 1 i 1 
F~/ Eg 2 2 0 2 0 0 

Fq to Fo and the Brillouin zone point involved will 
clearly be the M point with q = (½, ½, 0). 

The irreducible representations of D54h/T M are 
shown in Table 4 and using the proper generators 
of Pmmn it is found that two complex-conjugate 
representations subduce F~: 

2 p 1 E Eu and ' U *  

As a consequence, 2E" and 1E'~ must be regarded as 
a two-dimensional physically irreducible representa- 
tion E'~ (Lyubarskii, 1960). The corresponding libra- 
tional eigenmodes are 

01+ 03 
• 

Both modes bear out the following tilt schemes: 

~ , _ ~  ava-+-°-c + (or a°a;c +) 
+ + + 

• ~ : ~ a p a v c  . 

The remaining Landau conditions are fulfilled and 
hence this transition can again be of second order. 

(vi) The a°a°c--~a~a~c transition 

This transition was observed in TIA1F4 at 435 K 
and the low-temperature symmetry was designated 
as C 2/m  (C3h) (Bulou et al., 1982). However, the 
space group of a structure with tilt scheme a~a~e 
must be C2/c  (C6h) which is a subgroup of C2/m  
and hence the latter is excluded because additional 
deformations could never explain an ascent in sym- 
metry. Because there is no change in the volume of 
the unit cell (translationengleich) the active rep- 
resentation will be found at the zone centre and the 
allowed small representations of I4 /mcm at the F 
point are shown in Table 5. 

The generators for I2 /b l l (C6h)  in the correct 
setting are 

(C2x 11 {Ilooo}. 

F~ and F~ subduce and the corresponding phonon 
eigenvectors are 

tpr~+ = 0 

01+0 

The normal coordinates of the remaining octahedra 
follow from phase relationships in the unit cell. The 
resulting librational eigenmode generates a structure 
with tilt scheme aaa~C and since the remaining con- 
ditions are fulfilled this transition can be of second 
order. 

Discussion 

The a°a°c°-~ a°a°e + transition in RbA1F4 at 553 K as 
found by Bulou et al. (1982, 1983) is of first order 
although Toledano & Toledano (1982) and the pres- 
ent work predict it to be of second order according 
to the Landau criteria. This indicates that the soften- 
ing of an M~- mode in a perfect structure is a too 
simple explanation. Bulou et al. assume that interlayer 
disorder and structural disorder concerning the 
fluorine ions may be responsible and their hypothesis 
is substantiated by the observation of diffuse X-ray 
scattering and a modulated background in neutron 
diffraction patterns. 

In an attempt to analyse the sequence of transitions 
observed for RbA1F4 and RbVF4, Loyzance & Couzi 
(1984) find two representations M~- and M~- sub- 
ducing onto F~- of P4/mbm but M~- leads to a setting 
of the symmetry elements which is inconsistent with 
the observed structure, In our opinion the family tree 
presented by these authors should bifurcate at the 
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M~--generated P4/mbm and not at the M~--generated 
P4/mmb. 

As for the a°a°c°-~ apa°C ° transition, it is found to 
be of second order as predicted in RbFeF4, whereas 
for CsFeF4 and CsVF4 this transition is of first order 
(Hidaka, Wood & Garrard, 1979; Hidaka, Wood, 
Wanklyn & Garrard, 1979; Hidaka et al., 1982). 
Probably a coupled stenc displacement ol the la[ger 
Cs ÷ ion causes this first-order character. Hidaka indi- 
cates that this transition could be induced by an 
X-point mode with B2g symmetry and q=  (½, 0, 0), 
which is confirmed by the present work since the 
B2g/X2 mode is symmetrically equivalent with the 
B3g/X-~ mode (i.e. it is sufficient to interchange the 
tetragonal a and b axes). 

The + oo + + o a~a~c ) transition in apa c - > a p a p C  (or + + + 
CsFeF4 is found to be of second order and a mode 
with B3g symmetry and q=  (0,½,0) is said to be 
probably responsible (Hidaka, Wood, Wanklyn & 
Garrard, 1979). This second-order character is con- 
firmed by the present analysis but rather than a B3~ 
mode, a B , z / Y ;  mode with q: (½, 0, 0) is involved. 

In RbFeF4, on the contrary, a first-order character 
is found (Hidaka, Wood, Wanklyn & Garrard, 1979) 
as expected. 

+ + + 
The transitions a°a°c°--> apapc in RbA1F4 and the 

_+_o_o a°a°c+~apa c in RbVF4 are both of second order 
(Bulou et al., 1983; Hidaka et al., 1982) as predicted. 

Loyzance & Couzi (1984) also indicate the same 
two complex-conjugate representations to be active 
in this transition and the present work confirms their 
conclusion about the order. 

The present analysis is summarized in a transition 
diagram shown in Fig. 5. 

Although the complete analysis of all possible 
transitions found in the A B X  4 family tree would lead 
us too far, some general remarks can be made. It is 
interesting to find out whether these transitions, 
involving only tilting octahedra, are always allowed 
to be of second order. Obviously, when the rep- 
resentation which is active according to the Birman- 
Worlock theorem is one dimensional, third-order 
invariants in the free-energy expansion will be discar- 
ded. The symmetrized cubes of two-dimensional rep- 
resentations, on the other hand, will only contain the 
totally symmetrical representation for the case of 
trigonal and cubic point groups (Cracknell & Joshua, 
1968) and because the factor g r o u p  G k / T  k is isomor- 
phic with the little co-group it is certain that none of 
the two-dimensional active representations under 
consideration could ever yield third-order invariants 
in the free-energy expansion. Furthermore, since only 
zone boundary and zone-centre representations are 
considered, the Lifshitz condition will always be 
fulfilled as was mentioned before. It is therefore clear 
that, if the Birman-Worlock theorem is satisfied, the 
transition will always be allowed to be of second 
order. 

An interesting alternative for drawing general con- 
clusions about the order of transitions between phases 
with tilted octahedra in ABX4 compounds from 
the observed changes in the reciprocal space lies 
in the use of the so-called diffraction typology (DT) 
of the involved phases. The DT describes the features 
of the reciprocal space in a shorthand way making 
use of a code based on the labelling of special high- 
symmetry points of the Fq Brillouin zone (Deblieck 
et al., 1985). Obviously the pure translationengleich 

8 ° a ° C  ° P4/mmm(O~.) 
CsFeF 4 (I), CsVF4(I ) 

RbAIF 4 (I), RbFeF 4 (I) 
M~/A2g / RbVF 4 (I), TIAIF 4 (I) - ~  A~/A2e~ , 

RbA',F: ('',~.-'~'~ (") /"-'" " "  ~ ' ~ ,  b'7" 

/ . m 4 \  ' CsFeF 4 (11), CsVF 4 (11) q=(O 0,0) 
/,,,, \ RbF~F, (.) " I 
/ \ Y:B, / T ' , ,  Y;B, i 

/ 1 
. ;  .°c+ . ; . ;  c÷ I . ; , ;  co " ; " ; ~ -  

Prnmn(D123) Pmmn(D~3) I em~nn(Di23) 1(2/b)11(C6") 
RbVF, (111) CsVF4 (111) I CsFeF. (111) TIAIF4 (111) 

RbAIF4 (111) I . 

l q=(~.o.o) 

apSpC 
P21212(D 3) 
RbFeF4 (111) 

Fig. 5. Family-tree representation of the results of the present 
work. The indication of the phase number following each com- 
pound name is the same as that used by Bulou et al. and Hidaka 
et al. The occurring phases are grouped in levels according to 
the index of the symmetry reduction. This symmetry reduction 
is indicated by a letter t, k or m (translationengleich, klassengleich 
or mixed) followed by the index. 

X ( Y ) ~ R ( S )  
XYM AXS(A YR) AZM RSM 

AXYZRM AXZRSM 
( AXYZSM ) AXYRSM ( AXYZSM ) 

Fig. 6. Transition diagram in terms of the diffraction typology 
derived from the group-to-subgroup family tree of perovskite- 
related A B X  4 compounds (Deblieck et al., 1985). The symmetri- 
cally related typologies are given between brackets. 
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transitions will not yield a difference in the DT and 
hence only transitions involving a klassengleich or 
mixed-type symmetry reduction have to be con- 
sidered. The allowed transitions between the different 
possible DT's are derived from the ABX4 family tree 
and they are summarized in Fig. 6 where the sym- 
metrically related typologies are enclosed between 
brackets. 

Concluding remarks 

For some of the transition sequences analysed in the 
present work, the Landau theory with the tilting of 
regular octahedra as the only order parameter occur- 
ring predicts the observed second-order character. 
This supports the hypothesis that in most of these 
transitions no other major structural distortions are 
present. 

In those cases where a first-order character is found, 
either supplementary symmetry-reducing distortions 
or another possibility such as the lack of long-range 
order between octahedral layers may have to be con- 
sidered. The presence of diffuse X-ray scattering in 
RbA1F4 (Bulou et al., 1983) supports the latter 
assumption. 

For those transitions which were not mentioned in 
the discussion the second-order character has not yet 
been observed experimentally. 

Finally, it may be concluded that the mere existence 
of a group-to-subgroup relation, according to the 
Birman-Worlock theorem, between ABX4 phases 
which differ only in their tilt schemes is a sufficient 
condition for a second-order transition to be allowed. 

I thank Professor Dr A. Janner and Dr E. Govaerts 
for valuable discussions. I am very indebted to Pro- 
fessor Dr S. A. Amelinckx and Professor Dr J. Van 

Landuyt for their appreciated suggestions and the 
critical reading of the manuscript. 
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Abstract 

Heavy-atom sites in an isomorphous replacement 
derivative are usually found by inspection of a 
difference Patterson map. A systematic search pro- 
cedure is necessary in the presence of high non- 

crystallographic symmetry as in a crystalline virus. A 
reciprocal-space equivalent of the Patterson search 
procedure has been developed. Furthermore, it is 
shown that the Patterson search is closely analogous 
to the usual 'feedback' tests applied in checking a 
proposed site. The separation of self and cross vectors 
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